As data centers scale to ever larger sizes in recent years, the demand for great bandwidth and higher speed is growing too. Recently, OM5 has been approved to be a new type of multimode fiber (MMF) for high speed data center applications. And various discussions about its characteristics and features attract much attention. This article will illustrate some frequently asked questions to help you get a clear view on OM5 fiber optic cable.Telecommunications Industry Association (TIA) initiated a workgroup in October 2014 to develop guidance for a wide band multimode fiber (WBMMF) 50/125 µm standard to support short wavelength division multiplexing (SWDM) transmission. The TIA-492AAAE Standard was published in June 2016. The IEC WB MMF standard is anticipated to be completed by early 2017.
OM5 is designed to support at least four low-cost wavelengths in the 850-950 nm range, enabling optimal support of emerging Shortwave Wavelength Division Multiplexing (SWDM) applications that reduce parallel fiber count by at least a factor of four to allow continued use of just two fibers (rather than eight) for transmitting 40 Gb/s and 100 Gb/s and reduced fiber counts for higher speeds.
Shortwave data center connections are usually powered by VCSELs operating near a wavelength of 850 nm. Shortwave wavelength division multiplexing (SWDM) is a technology that uses four wavelengths across the 850 to 950 nm range. SWDM transceivers were designed to use 2-fiber connectivity into the transceiver with OM5 multimode fiber.There are no transmission standards that specify OM5 or SWDM. Transmission standards typically include only one multimode fiber variant that is selected based on economic, commercial, and technical criteria. Parallel transmission is the default multimode fiber variant for data rates = 40G.
In fact, OM5 fiber does not support existing optical transceiver. Usually, 40G and 100G SWDM4 optical transceiver can be used with OM5 fiber. The SWDM4 transceiver uses a complex short wavelength division multiplex (SWDM) technology. Signals at four wavelengths (850nm, 880nm, 910nm and 940nm) are transmitted over one fiber. And only two fibers are required for bidirectional transmission.